Expansions of CAG repeat tracts are frequent in a yeast mutant defective in Okazaki fragment maturation.

نویسندگان

  • J K Schweitzer
  • D M Livingston
چکیده

To understand the causes of CAG repeat tract changes that occur in the passage of human disease alleles, we are studying the effect of replication and repair mutations on CAG repeat tracts embedded in a yeast chromosome. In this report, we examine the effect of a mutation in the RTH1/RAD27 gene encoding a deoxyribonuclease needed for removal of excess nucleotides at the 5'-end of Okazaki fragments. Deletion of the RTH1/RAD27 gene has two effects on CAG tracts. First, the rth1/rad27 mutation destabilizes CAG tracts. Second, although most tract length changes in wild-type yeast cells are tract contractions, approximately half of the changes that occur as a result of the rth1/rad27 mutation are expansions of one or more repeat units. These results support the hypothesis that tract expansions that occur during passage of human disease alleles bearing expanded CAG tracts result from excess DNA synthesis on the lagging strand of replication.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interactions among DNA ligase I, the flap endonuclease and proliferating cell nuclear antigen in the expansion and contraction of CAG repeat tracts in yeast.

Among replication mutations that destabilize CAG repeat tracts, mutations of RAD27, encoding the flap endonuclease, and CDC9, encoding DNA ligase I, increase the incidence of repeat tract expansions to the greatest extent. Both enzymes bind to proliferating cell nuclear antigen (PCNA). To understand whether weakening their interactions leads to CAG repeat tract expansions, we have employed alle...

متن کامل

The impact of lagging strand replication mutations on the stability of CAG repeat tracts in yeast.

We have examined the stability of long tracts of CAG repeats in yeast mutants defective in enzymes suspected to be involved in lagging strand replication. Alleles of DNA ligase (cdc9-1 and cdc9-2) destabilize CAG tracts in the stable tract orientation, i.e., when CAG serves as the lagging strand template. In this orientation nearly two-thirds of the events recorded in the cdc9-1 mutant were tra...

متن کامل

Orientation-dependent and sequence-specific expansions of CTG/CAG trinucleotide repeats in Saccharomyces cerevisiae.

A quantitative and selective genetic assay was developed to monitor expansions of trinucleotide repeats (TNRs) in yeast. A promoter containing 25 repeats allows expression of a URA3 reporter gene and yields sensitivity to the drug 5-fluoroorotic acid. Expansion of the TNR to 30 or more repeats turns off URA3 and provides drug resistance. When integrated at either of two chromosomal loci, expans...

متن کامل

Maternal germline-specific effect of DNA ligase I on CTG/CAG instability.

The instability of (CTG)•(CAG) repeats can cause >15 diseases including myotonic dystrophy, DM1. Instability can arise during DNA replication, repair or recombination, where sealing of nicks by DNA ligase I (LIGI) is a final step. The role of LIGI in CTG/CAG instability was determined using in vitro and in vivo approaches. Cell extracts from a human (46BR) harbouring a deficient LIGI (∼3% norma...

متن کامل

The Chromatin Remodeler Isw1 Prevents CAG Repeat Expansions During Transcription in Saccharomyces cerevisiae

CAG/CTG trinucleotide repeats are unstable sequences that are difficult to replicate, repair, and transcribe due to their structure-forming nature. CAG repeats strongly position nucleosomes; however, little is known about the chromatin remodeling needed to prevent repeat instability. In a Saccharomyces cerevisiae model system with CAG repeats carried on a YAC, we discovered that the chromatin r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Human molecular genetics

دوره 7 1  شماره 

صفحات  -

تاریخ انتشار 1998